

Le logiciel CASSIS : réalisations et évolutions

Emmanuel Caux pour l'équipe CASSIS

CASSIS : réalisations et évolutions AG OVGSO - 10 mars 2022

Présentation générale 1/2

Centre d'Analyse Scientifique de Spectres Instrumentaux et Synthétiques

- Outil de visualisation, de traitement et d'analyse de spectres
 - Initialement développé pour les surveys spectraux (sub)millimétriques de gamme de fréquence très large comme avec Herschel
 - Ouvert depuis plusieurs années à tous les domaines de longueur d'onde

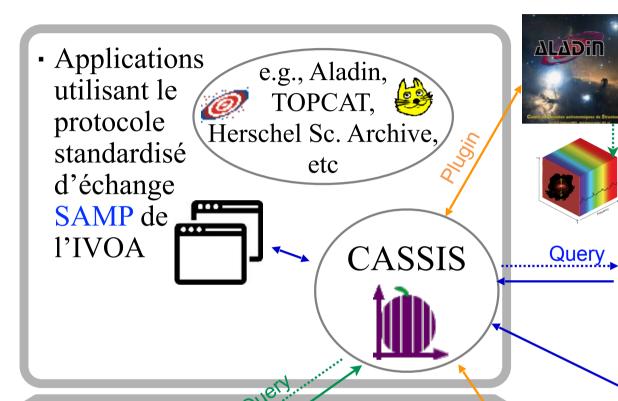
• Livré avec :

- une base de données SQLite agglomérant les données spectroscopiques d'espèces chimiques (CDMS + JPL + NIST + VASTEL) : > 9 millions de raies
- une base de données moléculaire : 87 fichiers de collision

- Mise à jour régulière du logiciel ~ tous les 6 mois (!!!)
 - Dernière version 6.2 décembre 2021 ; version 6.3 prévue incessamment

Présentation générale 2/2

- Service d'Observation labellisé ANO5 par l'INSU en 2013 dans l'OV-GSO-DC
 - ▶ Relabellisé pour 4 ans en 2021
- Pôles Thématiques Nationaux : Pôle Atomes et Molécules (moribond !)
- Équipe :


2020 : 5 personnes ~ 1.3 ETP	2021 : 6 personnes ~ 1.7 ETP						
3 chercheurs : E. Caux (30%), S. Bottinelli (20%), C. Vastel (30%)	4 chercheurs : E. Caux (30%), S. Bottinelli (20%), A. Coutens (30%), C. Vastel (30%)						
2 ingénieurs CNRS: Jean-Michel Glorian (0.3 ETP) et Mickaël Boiziot (0.2 ETP)	2 ingénieurs CNRS: Jean-Michel Glorian (0.3 ETP) et Mickaël Boiziot (0.3 ETP)						
A. Aigerim, stagiaire M2 Computer Science for Aerospace UPS 6 mois (janvier-juin 2020)	T. Gaugain, stagiaire DUT 3 mois (04-06/2021) A. Boulanger stagiaire Centrale Nantes 4ème année 5 mois (04-08/2021)						

- 2022 : chercheurs ~ 1.1 ETP OK (?), ingénieurs ~ 0.6 ETP, manque 0.4 ETP!
- 2023 : chercheurs ~ 1.1 ETP OK (??), ingénieurs ~ 0.6 ETP, manque > 0.4 ETP!

Aspects OV

 Services de spectres standardisés par l'IVOA :

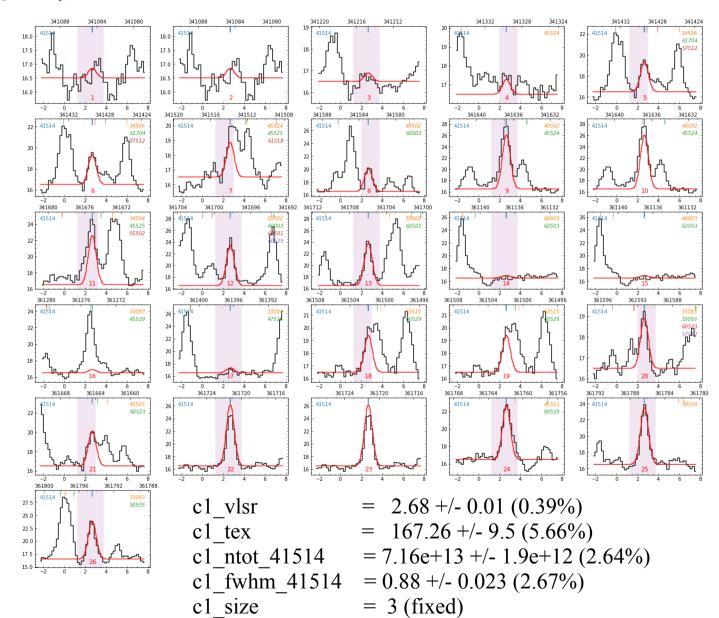
- SSAP e.g., Polarbase, Pollux
- EuroPlaNet-TAP e.g., The Auroral Planetary Imaging and Spectroscopy
- Obs-TAP
- SIMDAL
- Envoi de données à partir d'un web-service, via SAMP

- Données spectroscopiques :
 - VAMDC
 - Protocole SLAP de l'IVOA e.g., SPLATALOGUE, NIST
- Autre:
 - Datalink (Pollux): manipuler les données, e.g., convolution
 - Query store (VAMDC) : Obtenir des informations, e.g. citations

Réalisations

- Améliorations du modèle "LTE"
- Amélioration de la lecture de spectres (FITS; FITS Apis collaboration vizir)
- Conversion K ↔ Jy ; diagramme rotationnel en Jy (intensité intégrée vs énergie)
- Tutorial ESA "Redshift determination Tutorial with CASSIS"
- Possibilité d'interfacer une base de raies avec module dédié + à partir de fichiers ASCII lus par un script Jython
- Intégrer / convertir des modules en python
 - lancement de scripts python pour figures personnalisées (publications)

En cours 1

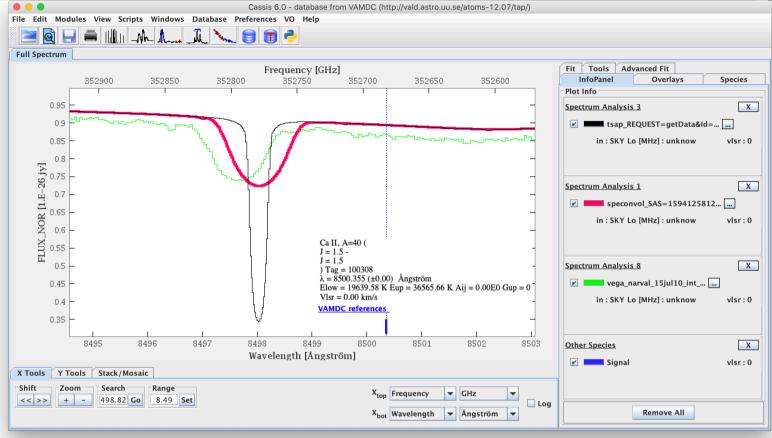


- Intégrer / convertir des modules en python
 - Module de fit multi-components et multi-species (LTE)
 - Traitement et modélisation d'un ensemble de spectres provenant d'un cube de données
 - Cartes des paramètres physiques fittés (Tex, Vlsr, N, FWHM)
- Interfaçage avec POLLUX:
 - CASSIS-POLLUX Specflow
- Interfaçage avec ALADIN:
 - CASSIS Aladin Plugin
- ATOMIS: ALMA archive TOol for Molecular Investigations in Space (ERC Chemtrip)

Module python multi-fit

Actuellement pas d'interaction directe avec CASSIS

Utilisation de sa database SQLlite


Scripts à "nourrir" à la main

reduced chi-square = 1.18

POLLUX-CASSIS Specflow

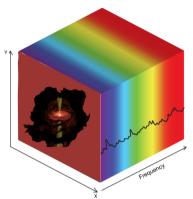
Convolution: radial velocity = -20.6 km/s + rotational velocity = 24 km/s and + macroturbulence = 2km/s + instrumental profile = 102 mA

Pb1 = VAMDC : vacuum wavelength. NIST & VALD : air wavelength, very close to the observed wavelength.

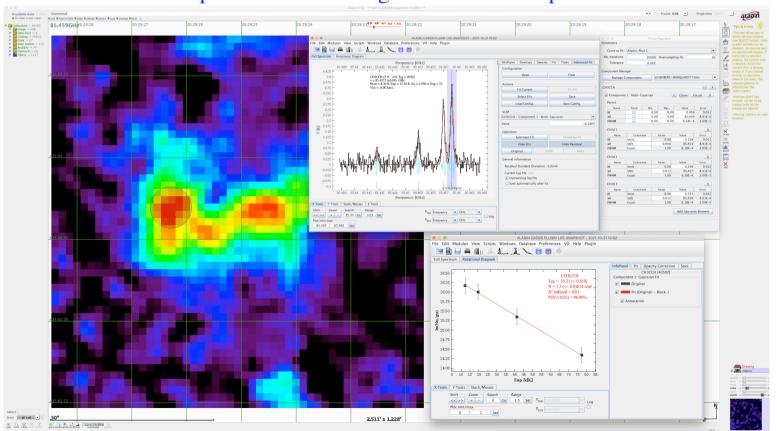
Pb2 = Varying Vrad does not change anything

Pb3 = Is Vega the best use-case? Rapid rotator with peculiarities in the spectra.

CV in Montpellier in May to work with Pollux team to produce a use case.



CASSIS-ALADIN Plugin



- ALADIN: visualization of datacubes
- CASSIS: analysis of spectra
- Need for an efficient analysis of spectra in ALMA /NOEMA datacubes

Spectral datacube

• Beta version on https://aladin.u-strasbg.fr/AladinDesktop/

ERC Chemtrip

Send Request

ATOMIS (ERC Chemtrip)

- ATOMIS: ALMA archive TOol for Molecular Investigations in Space
- Web interface to search for data of interest in the ALMA archive using spectroscopic criteria (molecule, A_{ij}, E_{up}, ...)
- Use of CASSIS database

Sahar Ben Hmida (engineer, ERC)

Max : 0.5

Url list to download List of url fits to download Search 1 Next

Sources			۸۱۸	// A	booryo	tions for	ППО	10002	IDI				
Choose an option for Sources	 Source Names Source Coordinates Load a file for sources 	•	☑ Sourc □ DEC □ Band □ Obs T	e name	Source RA✓ SeparationMin Frequent✓ PI Name	☐ Source ☐ Covered	DEC □ So	ourceVLSR ngular Resolutio ax Frequency G	□ ALMA source on ☑ Sensitivity Hz□ Cor. Max. Fre	eq 🗆 QA2 Pa	al resolution] RA] Max. Reco. Scale] Data Rights] Access url to AL	
Upload Source file	Browse No file selected.	②		Sensitivity range (mJy/beam)					Angular resolution (arcsec)				
Observation	Filters		Mir	ı : 4.4	Se	lected Value : 49.1	N	Max : 62.6	Min : 0.2	Sele	ected Value : 0).37	Max : 0
								Valida	ate				
Search_radius (")	12	②	Shaw d										
Angular resolution (")	<2	②		0 v entri	Source ¢	÷	Separation (Covered \$	Angular Resolution \$	Sensitivity (mJy/beam	arch Source Na	Publication	
Spectral resolution (km.s-1)	1	②	1	Sel	IRAS 16293	Project code 2013.1.00061.S	(arcsec) 3.67264	HDO (3:1:2 2:2:1), 225.89672	(arcsec) 0.264	per 1 km/s) 4.77468	Coutens, Audrey	number 6	List of u
Sensitivity (mJy beam-1 per 1 km s-1 channel)	100	②	2		IRAS 16293	2013.1.00061.S	3.67264	HDO (2:1:1 2:1:2), 241.56155	0.264	4.65455	Coutens, Audrey	6	List of u
		5		IRAS 16293	2013.1.00061.S	6.25067	HDO (1:0:1 0:0:0), 464.92452	0.206	19.53524	Coutens, Audrey	6	List of u	
Molecular specie	es		6		IRAS	2013.1.00061.S	1.01536	HDO (1:0:1 0:0:0),	0.206	19.53524	Coutens,	6	List of u
Molecular species	②				16293			464.92452			Audrey		to down
Eup Min (K)	Eup Max (K)	500	?	S	Sear	Search Pı	Search!	Searc	Search	Search 5	Sea	Search F	Sear
Aij Min (s-1)	O Aij Max (s-1)	*	Showing	1 to 4 of 4 e	ntries (filtered fro	m 8 total entries)						Previou	us 1

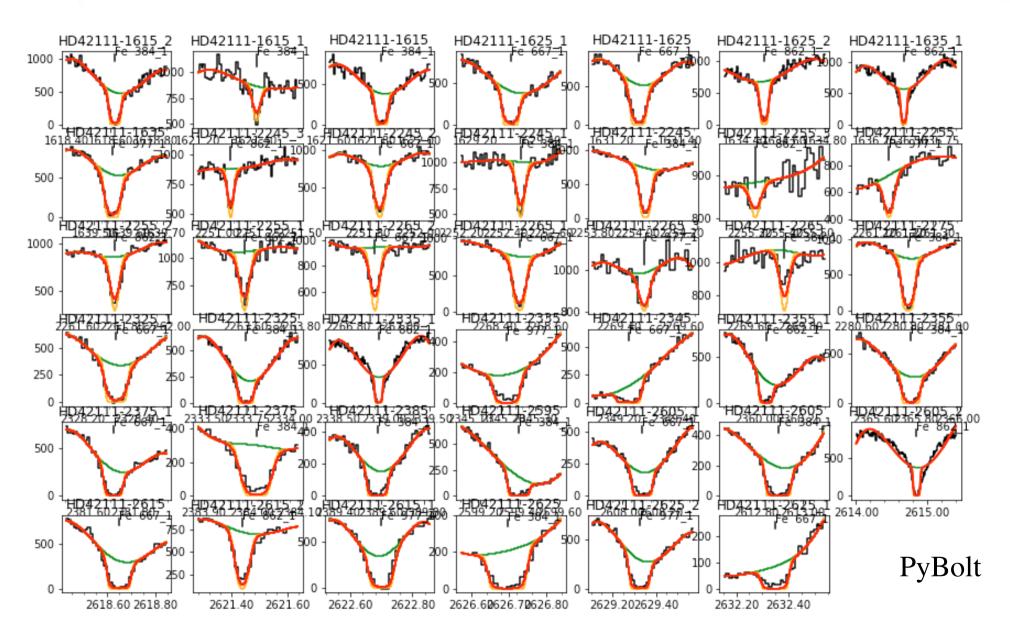
En cours 2

- Intégrer / convertir des modules en python
 - Module de fit raies atomiques en absorption (Owens PyBolt)
 - Lancement de tâches UWS (protocole IVOA pour tâches asynchrones) : projet STOP (code hors ETL "LVG-GRE")
- Interfaçage avec de nouvelles bases de données spectroscopiques pour l'identification d'espèces chimiques :
 - Base atomique Morton, 2003, ApJ Sup 149:205-238
 - Base atomique Kentucky https://www.pa.uky.edu/~peter/newpage/
 - Autres bases : GEISHA, MIPAS, ExoMol, HITRAN...
- Interaction avec IPAG Grenoble pour interroger leur base de collision EMAA en cours de développement
 - TBD interaction avec new BASECOL
- Module Deep-Learning CNN pour identification automatique des raies dans un spectral survey
- Participation à la proposition d'ANR ILIT (T. Csengeri, LAB + IRAP + IRIT + IPAG)

Évolutions

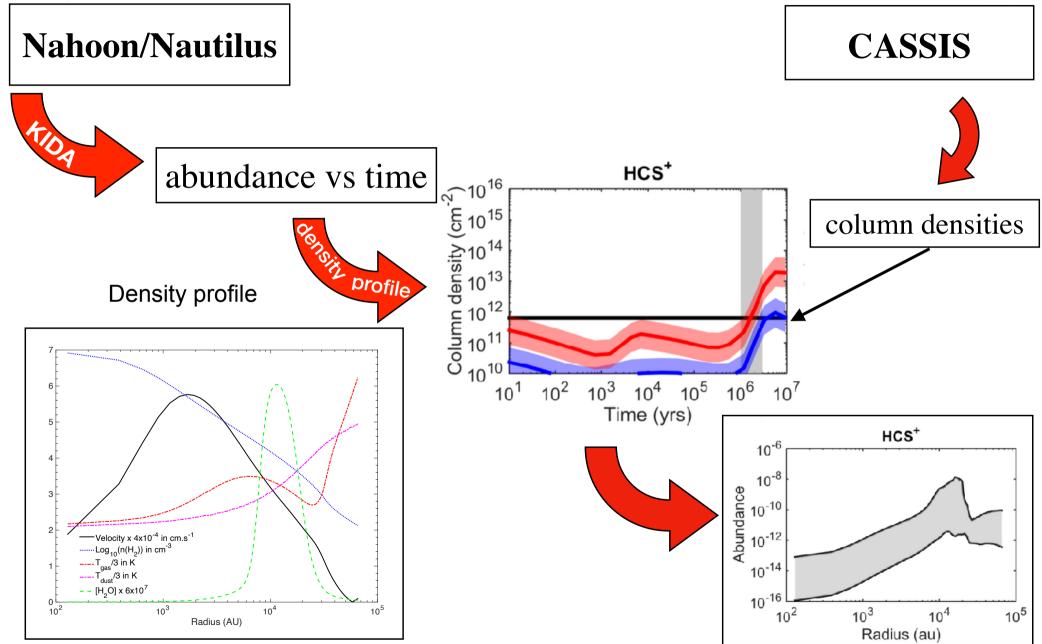
- Déploiement :
 - Version plus simple et plus légère de CASSIS?
 - CASSIS lite sur navigateur ? (comme Aladin lite)
 - Intégrer / convertir des modules en python puis Astropy (?)
 - Intégrer / convertir des modules en Julia ?
- Affichage des erreurs sur le flux, si présentes dans les fichiers de spectres
- Prise en compte continue de nouveaux formats de spectres (HDF?, PDS,...)
- Fourniture d'une base de données HFS, O/P et A/E ingérée automatiquement depuis CDMS
- Complétion des Partition Functions (T = 2.725 1000 K) + vibrations
- •

Évolutions : du radio aux UV/X!

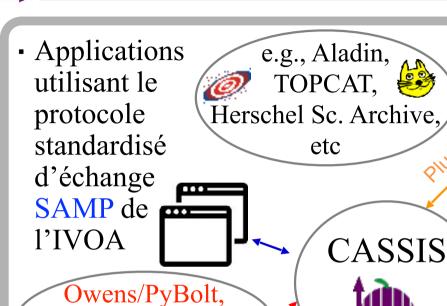


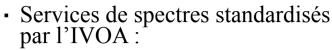
- A l'origine, CASSIS prévu pour les spectres FIR-(sub)mm en K L'ouverture vers d'autres longueurs d'ondes demande des outils supplémentaires
- JWST bientôt opérationnel, spectres et datacubes NIR à identifier et modéliser
- Optique/UV/FUV
 - largeur équivalente, "curve of growth"
 - "profile fitting": PyBolt intégration de l'utilisation du module Fortran Owens pour la modélisation de spectres atomiques (collaboration avec C. Gry, LAM)

Du radio/FIR aux NIR/Optical/UV/X!



Link with Nautilus/KIDA




Help!!

CARTA'

Querv

- SSAP e.g., Polarbase, Pollux
- EuroPlaNet-TAP

 e.g., The Auroral Planetary
 Imaging and Spectroscopy
- Obs-TAP
- SIMDAL
- Envoi de données à partir d'un web-service, via SAMP

- Données spectroscopiques :

Nahoon/Nautilus/KID

STOP

- VAMDC
- Protocole SLAP de l'IVOA e.g., SPLATALOGUE, NIST
- Plus de bases de données!
- Plus de modèles (PDR, shocks, Comets…)

Autres:

- Datalink (Pollux) : manipuler les données,
 e.g., convolution
- Query store (VAMDC): Obtenir des informations, e.g. citations
- UWS (Prototype STOP)
- Deep-learning CNNs et autres ?
- Artemix (LERMA)...

Conclusions

- CASSIS de plus en plus intégré OV + couplage avec d'autres services OV-GSO
- CASSIS de plus en plus multi domaine spectral
- Besoin de personnel technique, toujours trop sous-dimensionné depuis des années, et évolution pas vraiment positive, personnel scientifique bienvenu!
 - 2022 : chercheurs ~ 1.1 ETP OK (?), ingénieurs ~ 0.6 ETP, manque 0.4 ETP!
 - 2023 : chercheurs ~ 1.1 ETP OK (??), ingénieurs ~ 0.6 ETP, manque > 0.4 ETP!
- Réfléchir à soumettre en PI une demande européenne H2024 ?
 - Specific Objective 2.1: High-quality science, knowledge and innovative solutions facilitate a digital transition in Europe, including a new European approach to AI
 - Quels partenaires?
- Questions, remarques, suggestions :

cassis-team@irap.omp.eu

Liens

- Site OV-GSO-DC
 - https://ov-gso.irap.omp.eu/
- CASSIS:
 - http://cassis.irap.omp.eu
- Pollux
 - http://pollux.graal.univ-montp2.fr
- VAMDC
 - http://portal.vamdc.org http://vamdc.eu/
- VESPA
 - http://vespa.obspm.fr/planetary/data/epn/query/all/